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Abstract. It is shown that the Kustaanheimo-Stiefel transformation which transforms the 
three-dimensional Kepler problem into that for a four-dimensional harmonic oscillator 
may be expressed in terms of quaternions. In this form the transformation represents a 
continuous mapping of a triad of orthonormal vectors fixed in space into a rotating triad 
of orthogonal vectors where one of the unit vectors is mapped into the position vector of 
a moving particle. The reduction of the Kepler problem to that of a harmonic oscillator is 
straightforward and direct in the quaternion formalism. The complex stereographic trans- 
formation used recently by the author in the corresponding reduction of Schrodinger’s 
equation for the hydrogen atom is shown to be closely related to the quaternion rep- 
resentation. 

1. Introduction 

The KS transformation was introduced by Kustaanheimo and  Stiefel (1965) as a means 
of obtaining equations for the classical Kepler problem which are regular at the centre 
of attraction. This has particular advantages in the numerical calculation of perturbed 
motions (see Stiefel and  Scheifele 1971). The KS transformation maps the three- 
dimensional ( 3 ~ )  space of a Kepler orbit into a 4~ space in which the equation of 
motion becomes that of a harmonic oscillator with constraint. The transformation also 
has applications in the corresponding quantum mechanical problem and was used by 
Ho and Inomata (1982) in the calculation of the Coulomb Green function using the 
Feynman path integral method following earlier work by Duru and Kleinert (1979). 

In the present paper we show that the K S  transformation may be expressed in terms 
of quaternions and  that in this form it has a simple kinematical interpretation. The 
use of quaternions seems particularly apt although the closely related Pauli spin matrices 
could readily be used instead. We also show that the quaternion formalism has the 
further advantage that the reduction of the Kepler problem to the 4~ harmonic oscillator 
may be made in a direct way in contrast to the indirect approach used by Kustaanheimo 
and Stiefel (1965) and  by Stiefel and  Scheifele (1971) in their formalism. 

In 5 2 we give a brief description of the 2~ Kepler problem and  its reduction to 
the 2D harmonic oscillator, followed in 5 3 by a summary of the main features of the 
KS transformation for the 3~ case. Expressed in terms of quaternions we show in 8 4 
that the KS transformation may be interpreted as a transformation which maps con- 
tinuously a triad of orthonormal vectors fixed in space into a rotating triad of orthogonal 
vectors in such a way that one of the unit vectors is mapped into the position vector 
of a moving particle. The four variables involved in the KS transformation correspond 
to the four components of a quaternion and  are determined by the three angles needed 
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to specify the rotation of the triad of vectors as a rigid system and by the length of 
the position vector of the particle which determines an  expansion. The arbitrariness 
of the component of rotation about the position vector of the particle leads naturally 
to the constraint condition which forms part of the KS transformation and reduces the 
number of degrees of freedom from four to three. 

In § 5 it is shown that the reduction of the Kepler problem in 3~ to the 4~ harmonic 
oscillator may be achieved in a direct manner using the quaternion formalism. 
Expressions are also obtained for the angular momentum of the Kepler orbit in terms 
of the six constant components of the angular momentum of the harmonic oscillator. 
It is also shown that the KS transformation expressed in terms of quaternions is closely 
related to the complex stereographic transformation used by Cornish (1984) to trans- 
form Schrodinger's equation for the hydrogen atom into the wave equation for two 
coupled ZD harmonic oscillators. 

2. The two-dimensional case 

In 2~ the equation of motion for a particle of mass m moving under an inverse square 
law force of attraction towards the origin may be expressed as 

m i =  -K2151-35,  (1) 

E = iml.$12 - K ~ I ( ~ - ' ,  2i L = m ( t * t  - si*>, 

5 = 12, 5 = vi  +iv2, (3) 

where 5 = xI +ix2. The conserved energy E and angular momentum L are given by 

(2) 

where * denotes the complex conjugate. Make the substitution 

which is equivalent to 

(4) 

so that v I  and u2 are plane parabolic coordinates, and replace the time t by a new 
independent variable s defined by 

2 2  
XI = UI - u2, x2 = 20, v2, 

d s / d t  = 151-' = ( 5 )  

Then equations (1) and  (2) reduce to 

where ' denotes the derivative with respect to s. In the case of bounded Kepler orbits 
in the 5 plane E <O, and the corresponding motion in the 5 plane is that of a ZD 
harmonic oscillator with frequency w = (- E/2m)'", angular momentum i L  and energy 
Z K  (the numerical factors occurring in these expressions may be altered by introducing 
a numerical factor into the definition ( 5 )  of s). 

The appropriateness of the transformation 6 = l2  arises from the fact that ellipses 
centred at the origin in the 5 plane are mapped into ellipses with focus at the origin 
in the 5 plane (see Stiefel and  Scheifele 1971). The transformation (4) may also be 

I 2  
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expressed in matrix form 

The change of independent variable from t to s leads to an expression for the angular 
momentum in the 5 plane which has the same form as that in the 6 plane, and also 
reduces the equation of motion in the 5 plane to that of a harmonic oscillator. 

3. The three-dimensional case 

Kustaanheimo and Stiefel have shown that the 3~ Kepler problem may be reduced to 
that of a 4~ harmonic oscillator by using a transformation to a 4~ space given in 
matrix form by 

or more explicitly by 

XI  = u:-  U:- U: +U:, x2 = 2(UIU2 - U3U41, x3 u3 + u2u4) ,  (10) 

where x,, x2, x3 are the Cartesian components of the position vector x. The time t is 
replaced by s defined by 

ds/dt  = [ X I - ’  = I u I - ~ ,  

1x1 = (x: +x: +xx:)1/2, IuI = ( u : + u : + u : + u : ) ’ / 2 .  (12) 

~ = -/+-3X (13) 

ub: = (E/2m)u,, ff = 1,2,3,4,  (14) 

( 1  1 )  

where 

Then the equation of motion 

is shown to be equivalent in U space to the equations 

where E is the total energy of the Kepler orbit and where a prime denotes the derivative 
with respect to s, provided the parameters U, satisfy the condition 

u4u; - u3u; + u2u; - u , u :  = 0. (15) 

I t  follows that when E < 0 closed orbits in x space correspond by (14) to the motion 
of a 4~ harmonic oscillator in U space of frequency w = (-E/2m>’” subject to the 
constraint condition (15). The constraint shows that the 4~ harmonic oscillator may 
be regarded as two 2~ harmonic oscillators in the 23 and 14 planes coupled in such 
a way that their angular momenta are equal. It is easily seen that the constraint is 
consistent with the equation of motion (14) in that if it is satisfied at one value of s 
then it is satisfied for all s. Many algebraic and geometric properties of the KS 
transformation are discussed by Stiefel and Scheifele (197 1 ) .  
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4. The KS transformation expressed in terms of quaternions 

A quaternion q is expressed in terms of its components qn ( a  = 1 to 4) by 

q = q 1 e ,  +42e,+93e,+q4 

where e , ,  e,, e3 are unit quaternions which satisfy the relations 

e : = - 1 = e 2 -  2 - e39 e l e 2 =  e3 = -e,e, .  (17) 

We shall need to consider only quaternions with real components qe. A quaternion q 
is said to be real if q 1  = 0 = q2 = q3, and imaginary if q4 = 0. The quaternion 4 conjugate 
to q is defined by 

s =  -9 ,e, -q2e2-q3e3+q4.  (18) 

4s  = 4: + s :  + s :  + s: = M2, 

p4= qp. (20) 

Note that 

( 1 9 )  

and that if p and q are any two quaternions 

A vector x is conveniently expressed as an imaginary quaternion 

x = x ,  e ,  + x2e2 + x3e3. (21) 

If x and y are two vectors in three-space then their product as quaternions may be 
expressed in terms of their scalar and vector p,oducts: 

xy = -x  - y + x x y. 

This leads to two useful results 

xy +yx = -2x y, xy -yx  = 2x xy .  (23) 
Quaternions are particularly useful in dealing with rotations in three-space. Thus 

if q is any unit quaternion, so that q4 = 1, then the transformation x + y given by 

Y = 4xq (24) 

q = cos f~ -sin t$n = exp(-n$/2), 

represents a rotation in three-space. Writing 

(25) 

where n is a unit imaginary quaternion so that n - n = -nn = 1, then y given by (24) is 
obtained by rotating x about the unit vector n through the angle $ in the right-hand 
sense. 

Now consider the position vector x( t )  of a moving particle. A quaternion U( 1 )  may 
always be found so that 

x ( f )  = a ( t ) e , u ( t ) .  (26) 

r 2 = H =  i je ,ui j ( -e , )u = IuI4. (27) 

Writing 1x1 = r, it follows from this that 

In fact (26) represents a transformation whereby the unit vector along the O x ,  axis 
undergoes a rotation given by the quaternion r - ’ ”u  to align it with x together with 
an expansion of length by the factor r. Clearly U(?) at any instant lacks uniqueness 
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to the extent of an  arbitrary rotation about x( 1 ) .  For example, introducing spherical 
polar angles e, 4 so that 

x = r cos 6 e ,  + r sin e cos 4 e2 + r sin 0 sin 4 e3, (28) 

a possible choice for U would be 
U = r I j2  exp(-;+e,) exp(-t8e3) exp(-i+e,). 

Then r-‘!’u represents an  arbitrary rotation + about the Ox, axis, followed by a 
rotation 8 about the Ox, axis, followed finally by a rotation 4 about the Ox, axis. 

The effect of the rotation described by the quaternion r - ’”u  on the three unit 
vectors directed along the coordinate axes of x space may be expressed in terms of a 
transformation from the set of unit imaginary quaternions ek to a new set fk given by 

k = 1 ,2 ,3 .  

The f ,  satisfy the same relations (17) as ek do. J , f i  and f3 correspond to an orthonormal 
set of unit vectors which follow the motion in the sense that f l  is always directed along 
x ( t ) .  The rate of rotation n(t) of this set about x(t) is given by 

r’n(t) = r2f2 .f3 = f13 (d/dt)(&). 

Using (30) and (23), and after some algebra, this gives 

rO( r )  = iie, U - be, U. 

With the choice given by (29) for U ,  this gives 

n(t) = 6 + 4 COS e. (33) 

When the quaternion U is expressed in terms of its components 

U = u , e ,  + u2e2 + u3e3 + u4, (34) 

the transformation (26) gives for the components of x precisely equations (10) for the 
KS transformation. Moreover (32) gives 

r n ( t > = 2 ( u l t i 4 -  u ~ U I - U ~ U ~  + ~ 3 U 2 ) .  (35) 

The constraint condition (1  5 )  (which plays such an important part in the KS transforma- 
tion), when written with t as independent variable instead of s by using (1 l ) ,  is simply 
the condition that a(t) should vanish. Thus the KS transformation (10) together with 
the constraint condition (15) has a simple interpretation: the parameters U, are the 
components of the quaternion which through the transformation (26) maps the unit 
vector along the Ox, axis into the position vector x of the moving particle, while the 
unit vectors along Ox, and Ox3 are mapped into vectors which with x form an orthogonal 
triad having at each instant zero angular velocity about x. 

5. The relation between Kepler motion and the harmonic oscillator 

We obtain the equations which u ( t )  must satisfy if x ( t )  given by (26) satisfies the 
equation of motion (1 3) for a Kepler orbit. First note that 

(36) x = 2de,  U +x = 2iie, U - x, 
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where 

,y = ne, U - tie, U = r l l (  t ) .  (37) 

As we have seen, it is possible to choose U( t )  so that x = 0 for all t, but at this stage 
we leave this choice open. From (36) it follows that 

1x12 = 41U/Zlli 12 - x 2  

E = L m ( x / 2 -  2 K ’ I x I - I  = 2m/u121U12-4mx2- K ’ / u I - ~ .  (39) 

L =  mx x i =  m/u12(du - nu)- mxiie,u, (40) 

2(d/dt)(l U I ’U) - 421 U I 2  - ( K ’ /  m)l U 

(38) 

and so the energy equation for the motion satisfying (13) may be written 

The angular momentum L is given by 

and the equation of motion (13) becomes 

+ 2e,xU + e, u i  = 0. (41) 

Now take ,y = 0, which as we have seen is equivalent to the constraint condition 
(1% and replace t as independent variable by s defined by (1 1). Equations (40) and 
(39) then simplify to give 

m(C‘u - nu’) = L, (42) 

$m/U’12 - $ E / u I 2  = i K ’ .  (43 1 

U “ =  (E/2m)u, (44) 

The equation of motion (41), using (43), reduces to 

showing that the components of the quaternion U satisfy the equations of motion for 
a 4~ harmonic oscillator in agreement with the result (14) obtained by Kustaanheimo 
and Stiefel (1965). This direct derivation of (44) using the quaternion formalism also 
has the advantage that it gives an expression for the angular momentum L of the 
Kepler orbit in terms of the variables in U space. From (42) it follows that the 
components of L along the fixed coordinate axes corresponding to the unit quaternions 
e , ,  e, and e3 are given in terms of the six constant components Uap of the angular 
momentum of the 4~ oscillator by 

L ,  =4U2, = -4u4 , ,  L2=2(u31-u42), L3 = 2( U12 - U43), (45) 

Uap = m(u,u& - u p & ) ,  Q, p = 1,2,3,4.  (46) 
The constraint (1 5) requires 

U23 + U41 = 0. (47) 

where 

It is straightforward to show that the components of L referred to the moving axes 
corresponding to the unit quaternions f2 and f3 of (30) are given by 

1, = L *fi = m(iie,u’- zi’e2u) = -2( U3, + U42), 

1 3 = L . f 3 = m ( t i e 3 u ‘ - i i ‘ e 3 u ) = - 2 ( U , , + U 4 , ) .  

Thus I ,  and l3 are the two remaining constants of the motion arising from the six 
components of Uap. 
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Using (29), u(t) may be expressed as 
- 

= l A  - e 3 5 B ,  

where 

lA= r"2 cosfe  exp[el(G +4) /2]=  u4-e,u1, 

lB = r'/ 'sin fe exp[e,(+ - 41/21 = -u3  - e1u2. 
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(49) 

Then (26) gives for the components of x 

= / l A I 2  - 11B12, x2 + elX3 = 2lA[B. (51) 
With xI ,  x2, x3 replaced by z, x and y respectively, these give the transformation used 
by Cornish (1984) to reduce the Schrodinger equation for the hydrogen atom to that 
for a 4~ harmonic oscillator. In terms of CA and lB the constraint (15) becomes 

(52) 

which express the constraint condition in terms of coupled oscillators in the lA and 
lB planes, their angular momenta being equal and opposite. The angular momentum 
L of the Kepler orbit in x space is given by 

(53) 

5 A c' A - f  A 5' A---(lBtL-fBlA), - 

= Itl (5; CA - L A  CL) + e3 (5 L [A - &% 5B). 

The transformation given in P 2 for the ZD case may be recovered in several ways. 
For example, lA = fB = 2-'/*5 satisfies the constraint (52) and reduces the transformation 
(51) to (3) for orbits in the Ox2x3 plane. For orbits in the Oxlx2 plane a suitable choice 
for U in (26), which satisfies the constraint (1 5), is 

U = V I  -e3U2, (54) 
and the transformation (10) reduces to (4). 
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